More partial derivatives

Questions

Question 1. Let $f(x, y)=y e^{x y}$. Use a linear approximation to approximate $f(0.01,0.98)$.
Question 2. Find the tangent plane to the graph of the function $f(x, y)=1-\sin \left(x+y^{2}\right) e^{-y}-y$ at the point $(\pi, 0, f(\pi, 0)) \in \mathbb{R}^{3}$.
Question 3. Find the tangent plane to the surface

$$
x y+y z+z x=5
$$

at the point $(1,2,1)$. Hint: You can solve for z and then compute $\partial z / \partial x$ and $\partial z / \partial y$. Or you can compute these quantities via implicit differentation without explicitly solving for z.
(Soon we'll learn yet another way of solving this problem, in \$14.6.)

Question 4. Check that $x=1$ solves the equation

$$
x^{7}-x^{6}+2 x-2=0
$$

Now consider the equation

$$
x^{7}-1.03 x^{6}+2.06 x-2=0
$$

Can you linearly approximate a solution to this equation, given that $x=1$ solved the original equation?

Below are brief answers to the worksheet exercises. If you would like a more detailed solution, feel free to ask me in person. (Do let me know if you catch any mistakes!)

Answers to questions

Question 1. The partial derivatives of f are

$$
\begin{aligned}
& f_{x}(x, y)=y^{2} e^{x y} \\
& f_{y}(x, y)=e^{x y}+x y e^{x y}
\end{aligned}
$$

so $f_{x}(0,1)=1$ and $f_{y}(0,1)=1$. Hence

$$
f(0.01,0.98) \approx f(0,1)+f_{x}(0,1)(0.01)+f_{y}(0,1)(-0.02)=1+0.01-0.02=0.99 .
$$

Question 2. The partial derivatives are

$$
\begin{aligned}
& f_{x}(x, y)=-\cos \left(x+y^{2}\right) e^{-y} \\
& f_{y}(x, y)=e^{-y}\left(\sin \left(x+y^{2}\right)-2 y \cos \left(x+y^{2}\right)\right)-1
\end{aligned}
$$

so $f_{x}(\pi, 0)=1$ and $f_{y}(\pi, 0)=-1$. The tangent plane is

$$
z=1+(x-\pi)-y .
$$

Question 3. Let $F(x, y, z)=x y+y z+z x$. Then implicit differentiation yields

$$
\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}=-\frac{y+z}{x+y}, \quad \frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}=-\frac{x+z}{x+y} .
$$

So at $(x, y, z)=(1,2,1)$ we get -1 and $-2 / 3$ respectively. The tangent plane is

$$
z=1-(x-1)-\frac{2}{3}(y-2) .
$$

Question 4. Consider the equation

$$
x^{7}-a x^{6}+b x-2=0
$$

We can view this as defining x in terms of a, b near $(a, b, x)=(1,2,1)$. Implicit differentiation shows

$$
\frac{\partial x}{\partial a}=-\frac{-x^{6}}{7 x^{6}-6 a x^{5}+b}, \quad \frac{\partial x}{\partial b}=-\frac{x}{7 x^{6}-6 a x^{5}+b} .
$$

At $(a, b, x)=(1,2,1)$, these are $1 / 3$ and $-1 / 3$ respectively. So we can linearly approximate x when $a=1.03$ and $b=2.06$ via

$$
1+\frac{1}{3}(0.03)-\frac{1}{3}(0.06)=0.99
$$

We have

$$
(0.99)^{7}-1.03(0.99)^{6}+2.06(0.99)-2=0.0017 \ldots
$$

which is much closer to zero than

$$
1^{7}-1.03(1)^{6}+2.06(1)-2=0.03
$$

